
Curriculum
Coding in Python

 © codetoday limited

Codetoday Curriculum

Introduction
At codetoday we have developed an extensive curriculum that ranges from the very
basics and fundamental principles all the way to intermediate and advanced areas of
programming across a broad range of programming applications.

Our focus is on teaching programming thoroughly. We have designed a path through
the topics available in coding that enables us to rapidly move to more complex and
engaging projects. Our approach is to introduce the fundamentals very early on in their
most basic form, and then to revisit these topics adding breadth and depth later on as
students become more confident and proficient.

An important aspect throughout our whole curriculum is the focus on best practices
and neat and efficient coding styles. Often beginners write inefficient code as this has
little or no effect on simple, short programs. We feel that this should be corrected early
on, before it becomes a problem (when programs become longer and more complex).
We therefore model and discuss best coding practices right from the very beginning
and throughout all our courses.

Curriculum
In this document we outline the curriculum we use in all codetoday courses. The
Beginner and Intermediate Stages are shown here, as well as an indication of some of
the topics we cover at Advanced stages (in the Further Topics section).

Our approach is to find the right balance between introducing new topics and
consolidating existing ones. A common misconception that students can have is that if
they have used a certain tool in the past, they mistakenly think that they know that
topic in coding. In reality each topic always has more depth and more complex uses
that need to be learnt once the fundamentals are well understood. We therefore return
to topics in later Stages to dive deeper into them.

An important aspect when moving from beginner to intermediate is the ability to deal
with more complex projects. The topics in the early Stages may be well understood by
themselves, but combining them into a complex project requires more expertise.

Progressing through the Curriculum
Our approach is to start from the fundamentals in Stages 1-3 for all age groups. This
allows us to ensure that these key topics are understood well and thoroughly as
everything else relies on them later on. However, we progress at different paces for
different age groups. Older students can go through Stages 1-4 very rapidly before we
slow down to spend more time on the more complex topics. With younger students we
move more slowly as they need more time to master the basics.

1

Stage 1: General concepts and for loop (basic)
Key topics: code structure - for loop - commenting

LEARNING OBJECTIVES
Students will be able to:
‣ Write basic Python syntax correctly
‣ Place lines of code in the correct order for simple programs
‣ Translate simple instructions into Python code
‣ Identify when to use a for loop
‣ Write a basic for loop (using range())
‣ Understand the purpose of the indent in Python

Introduction to coding/programming and to programming languages

Concept of built-in commands / importing modules

Basic Python syntax

Basic structure and logical order of code

DRY: Don’t Repeat Yourself

for loop — basic: using range()

for loop: syntax

for loop: identifying when to use it

Further Python syntax: colon and indent

Commenting, keeping code well structured, naming good practices

2

Stage 2: Variables, while loop (basic) and defining functions using def

(basic)
Key topics: variables - while True loops - def for basic function definitions

LEARNING OBJECTIVES
Students will be able to:
‣ Have a good understanding of the structure of a computer program
‣ Identify when simple data needs to be stored using a variable
‣ Write comments in their code without being prompted to do so
‣ Identify when to use a while True loop
‣ Write a while True loop
‣ Notice errors and identify their location within code

Assignment of data / variables

while loop — basic: while True

Defining basic functions using def (with no input parameters and no return values)

Understanding some of the most basic/common error messages

print()

3

Stage 3: Data types, if statements and conditional while loops
Key topics: if statements - loops with conditions

LEARNING OBJECTIVES
Students will be able to:
‣ Understand the purpose of defining functions and write a basic function definition
‣ Identify when to use an if statement
‣ Write an if statement including an equality or comparison operator
‣ Write a while loop with a conditional statement and/or Boolean flag
‣ Create variables when required, using good naming practices
‣ Identify and fix some basic errors independently

Understanding basic error messages and how to fix them

Revisiting storing data using variables (=)

Introduction to basic data types (int, float, str, bool)

if statements

Equality and comparison operators (==, <, >)

Introduce text-based programs

while loop with conditional statements and/or Boolean flags

input()

Introduce The White Room analogy

String formatting

4

Stage 4: Lists and iterating through lists with for loops
Key topics: lists and data types

LEARNING OBJECTIVES
Students will be able to:
‣ Understand the need for lists and create a list using []
‣ Identify when to iterate using range and when directly through a list when using

for loops
‣ Understand indexing, including zero-indexing
‣ Identify and name different data types
‣ Have a basic understanding of initialising an empty list and then populating it

using a for loop
‣ Write down clear steps when planning a project

Review basic data types

Revisit decomposing ideas and processes into individual, unambiguous sequential
steps

lists*: basic introduction

lists: accessing data

lists: introduce basic list methods

for loop: iterating through a list

Using lists and for loops

Focus on understanding errors
* Note: lists can be used during earlier stages but without going into any details. This stage is when we start to fully introduce lists

5

Stage 5: Functions with parameters and further list consolidation,

debugging
Key topics: lists and functions - errors, bugs and debugging

LEARNING OBJECTIVES
Students will be able to:
‣ Identify when to use a list
‣ Access data from lists through indexing, including using the -1 index
‣ Write a for loop that iterates through a list
‣ Manipulate lists by using append() and remove()
‣ Initialise an empty list and populate it by using a for loop
‣ Recognise function definitions that have parameters and modify such function

definitions

Introduce the SRDR concept (Store | Repeat | Decide | Reuse)

Review and extend using lists to collect like items in a single data structure

Using the time module for timing actions

Consolidate the use of Boolean flags to control execution of subsections in code

Defining functions with parameters and input arguments*

Basic introduction to scope and namespace

Further work on understanding and dealing with errors

Introduce concept of bugs

Debugging using the print() statement

* Note: For some groups this can be introduced in conjunction with return statements and other related topics in Stage 6

6

Stage 6: Functions: return statements and creating instance attributes*
Key topics: lists and functions

LEARNING OBJECTIVES
Students will be able to:
‣ Understand that variables created inside function definitions are local, and what

this means
‣ Use a return statement in function definitions and call functions which have return

statements, understanding how data is transferred
‣ Identify what data type or data structure is required for simple data storage

requirements (excluding nested data structures)
‣ Have a general understanding of mutable and immutable data types and how this

affects how we use their respective methods
‣ Create instance attributes (nomenclature not required) to move data between

functions in programs already containing objects (e.g. turtle.Turtle / turtle.Screen)

Self-contained nature of functions and the local nature of variables within function
definitions

Review parameters in function definitions, including default values

Returning data from functions using a return statement

The White Room Analogy

Attaching data to an existing object using the dot notation (creating instance
attributes)*

Data types: distinction between mutable and immutable data types

tuples**

Further work on understanding and dealing with errors

* Knowledge of Object-Oriented Programming (OOP) not required at this stage, however we have been using objects since Stage 1
when creating a turtle.Turtle. Attaching variables to an object using the dot notation can be introduced here without the need for
OOP

* * Can be introduced when introducing dictionaries in Stage 7

7

Stage 7: Dictionaries and nested data structures
Key topics: dictionaries

LEARNING OBJECTIVES
Students will be able to:
‣ Independently add appropriate comments and structure code efficiently
‣ Understand the structure of dictionaries and create a dictionary using {}
‣ Identify when to use a dictionary
‣ Manipulate data in a dictionary by adding, removing and changing items in the

dictionary

Reinforce commenting and structuring code neatly

Focus on translating ideas into Python code

dictionaries: creating and accessing data

dictionaries: adding data to existing dictionaries through assignment

dictionaries: basic methods for dictionaries

list of dictionaries and the concept of nested data structures

Debugging using Visual/IDE debuggers

8

Stage 8: Reading and writing to file (.txt and .csv), introduction to data

analysis
Key topics: data manipulation and data structures

LEARNING OBJECTIVES
Students will be able to:
‣ Have a good general awareness of all variables in their programs and their

corresponding data types
‣ Independently plan algorithms of intermediate complexity
‣ Open a file and read data from it into their Python program
‣ Open a writable file and write data from their program into the file
‣ Understand how to move data from one form (data type) into another
‣ Understand the overall need to clean data obtained from any source before using it

Data types: a very good understanding of distinct types

Review dictionaries

for loop — looping through a dictionary

Algorithm building and planning

Reading from text files (.txt)

Converting data from one form to another

Concept of cleaning data before using

Focus on text-based programs and programs to analyse data

Reading from spreadsheets (.csv)

Writing data to file (.txt and .csv)

docstrings: documenting functions

list comprehensions

9

Stage 9: Basics of Object-Oriented Programming
Key topics: OOP

LEARNING OBJECTIVES
Students will be able to:
‣ Understand what OOP is and when it may be useful
‣ Create a simple class with __init__() method and additional methods
‣ Identify inheritance of classes
‣ Identify when magic functions are used

Data and manipulation of data

Philosophy of OOP

Creating classes

Interaction between different objects

Magic (dunder) functions

Inheritance

10

Stage 10: Numerical programming, visualisation, vectorisation of

equations
Key topics: numpy and matplotlib

LEARNING OBJECTIVES
Students will be able to:
‣ Have a basic understanding of numpy and matplotlib, and the ndarray data type
‣ Plot simple graphs

Introduce numpy

Introduce matplotlib

import formats

11

Further Topics

• Reading data from APIs
• Further work on OOP
• Further work on numpy and matplotlib
• Functional Programming

• philosophy and rules for FP
• map() and filter()
• lambda functions

• Generators
• Efficiency of different coding styles
• *args and **kwargs
• pandas and complex data manipulation and analysis
• Scientific/mathematical modelling

12

�,!"1,!�6��&*&1"!
�RƏɯǼƺɵ�!ȸƺɀƬƺȇɎً�nȒȇƳȒȇًב
záז�z¨ً�ÈȇǣɎƺƳ�kǣȇǕƳȒȅ

Áژבגו�חזאב�אژ
ژǣȇǔȒ۬ƬȒƳƺɎȒƳƏɵِƬȒِɖǸژ0
áژƬȒƳƺɎȒƳƏɵِƬȒِɖǸ

!ȒƳƺɎȒƳƏɵ�nǣȅǣɎƺƳ�ǣɀ�Ə�ƬȒȅȵƏȇɵ�ȸƺǕǣɀɎƺȸƺƳ�ǣȇ�0ȇǕǼƏȇƳ�٢ƬȒȅȵƏȇɵ�ȇɖȅƫƺȸ٣ِהבזחזוח�
«ƺǕǣɀɎƺȸƺƳ�ȒǔǔǣƬƺב�ي�RƏɯǼƺɵ�!ȸƺɀƬƺȇɎً�nȒȇƳȒȇً�záז�z¨ً�ÈȇǣɎƺƳ�kǣȇǕƳȒȅ

	Codetoday Curriculum
	Introduction
	Curriculum
	Progressing through the Curriculum

	Stage 1: General concepts and for loop (basic)
	Stage 2: Variables, while loop (basic) and defining functions using def (basic)
	Stage 3: Data types, if statements and conditional while loops
	Stage 4: Lists and iterating through lists with for loops
	Stage 5: Functions with parameters and further list consolidation, debugging
	Stage 6: Functions: return statements and creating instance attributes*
	Stage 7: Dictionaries and nested data structures
	Stage 8: Reading and writing to file (.txt and .csv), introduction to data analysis
	Stage 9: Basics of Object-Oriented Programming
	Stage 10: Numerical programming, visualisation, vectorisation of equations
	Further Topics

